
Empowering Cloud Computing for Non-image-based Diabetic 
Retinopathy Screening by Designing an EHR-oriented 

Incremental Learning Framework 

Dr. Tieming Liu
Professor, Oklahoma State University

Breakout Session 1: Track A



NOT-OD-23-070: Empowering Cloud Computing for 

Non-image-based Diabetic Retinopathy Screening by 

Designing an EHR-oriented Incremental Learning Framework

Chenang Liu (co-I), Tieming Liu (PI)
School of Industrial Engineering and Management

Oklahoma State University

chenang.liu@okstate.edu, tieming.liu@okstate.edu 

Parent Grant: NIH-NEI: 5R01EY033861
Harnessing Tensor Information to Improve EHR Data Quality for Accurate Data-driven Screening of 

Diabetic Retinopathy with Routine Lab Results

SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT, OKLAHOMA STATE UNIVERSITY



Motivation
Diabetic Retinopathy (DR)
§ Most common cause of vision loss among diabetic patients
§ Leading cause of blindness among adults in developed countries1
§ 7.69 M (2010) to 14.6 M (2050) in U.S.2

1, T. A. Ciulla, A. G. Amador, and B. Zinman, “Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies,” Diabetes care, vol. 26, no. 9, pp. 2653–2664, 2003.
2, National Eye Institute, NIH. Diabetic Retinopathy Data and Statistics. https://www.nei.nih.gov/learn-about-eye-health/outreach-campaigns-and-resources/eye-health-data-and-statistics/diabetic-
retinopathy-data-and-statistics. Updated on 11/19/2020 

§ Early stages: unsymbolic and most effective period for treatment
§ Low compliance rate (~43%) for recommended annual eye exams
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Problem Statement
Current Screening Method
§ Annual eye exams

§ Lack of experts
§ Dilation
§ Cost

§ AI-based retinal imaging method
§ Expensive imaging equipment

t1    t2     t3   t4   t5    t6
Image sources: yoursightmatters.com; Carl Zeiss

Our approach: 
• non-image based Screening 

§ Lab test data (widely available)
§ Using non-temporal data
§ Using temporal data
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Aims of Parent Grant

Harnessing Tensor Information to Improve EHR Data Quality

• Aim 1: weighted K-Nearest Neighbors (wKNN) for data 
imputation

• Aim 2: augmented generative adversarial network (GAN) 
for data balancing

• Aim 3: Bayesian hierarchical modelling for classifying 
unlabeled patients 

• Aim 4: Multi-branching Temporal Neural Networks for 
disease prediction 

Technical Challenges           

• Missing Data

• Imbalanced Data

• Unlabeled Data

• Tensor Data
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Cerner Health Facts® 
EHR Database

§ Patient #: > 100.8 M
§ Span: since 1998

# of DR
Patients

# of Non-DR
Diabetic Patients 

Positive 
Rate

Original
Dataset 69,354 2,363,051 2.85%

Final Dataset 
(with >=10 records)

12,590 401,609 3.04%

Independent Variables:
§ 21 common lab tests
§ 3 demographics (race/gender/age)
§ 5 comorbidities

Data and Variables

0

0.05

0.1

0.15

0.2

0.25

Crea
tin

ine
HbA

1c

Neu
ropath

y

Dura
tio

n o
f d

iab
ete

s
WBC

Nep
hropa

thy

Gluc
ose Age

Hem
atoc

rit

So
dium Race ALT

Hem
oglo

bin

Pota
ssi

um
MCH

C
RBC

Chlor
ide

Calc
ium

Albumin AST

Bilir
ubin

MCH
C

MCV

Essential Predictors

SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT, OKLAHOMA STATE UNIVERSITY



Opportunities and Challenges
Opportunity: 
◦ Cerner moved to the Cloud
◦ Periodically updated database 

Challenges:
◦ Simply retraining the model with all the date will result in an extremely high 

computational burden on the cloud.
◦ Need an efficient and effective model update approach 

Approach: Incremental Learning (IL)
Formulated incremental learning problem for this project
◦ Update the model by integrating the new data and the existing model, 

mathematically, 
𝑓! = 𝒢(𝑓,𝓨\𝓨′)

◦ 𝑓(*) is DR prediction model, and 𝑓!(*) is the updated prediction model by 
incorporating new EHR data 𝓨\𝓨′ using IL framework 𝒢. 𝓨′ is the updated data, and 
“\” represents set subtraction. 
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Aim 1: Design an EHR-oriented IL Framework

Motivation & Gap
◦ An EHR-oriented IL framework for DR prediction is still unavailable. 
◦ Most of the state-of-art IL approaches do NOT meet the need of: 
◦ Preserving previously acquired knowledge
◦ Considering the longitudinal effects in EHR

Proposed Approach 

A sample recycling-assisted 
incremental learning (SR-IL), which
• partially access the existing 

dataset via adaptive sampling 
strategy

• reduce the potential information 
loss

Figure: The overall framework of the proposed SR-IL. 
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Current Progress: A Preliminary Study

Classifier

• "IL" – Incremental Learning 
without sampling,
• "IL SS" – Incremental 

Learning with Simple 
Sampling,
• "IL IS" – Incremental 

Learning with Importance 
Sampling, 
• "CL" – Traditional (Classic) 

Machine Learning.
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Promising results: 
◦ Assisted by importance (give higher weight to the DR samples) sampling, the 

proposed approach has the lowest false negative and true positive occurrence.    



Aim 2: Scale-up IL to the Cloud Platform

Goals & Plan
◦ Make the implemented SR-IL toolbox compatible

with the cloud computing platform, which requires
◦ Effective integration of programming codes
◦ Appropriate adoption of the dependent

computing toolboxes and their versions

◦ Scale up and test the performance of SR-IL for
large-scale EHR dataset, including both
◦ Computational efficiency
◦ DR risk prediction accuracy

Figure: The overall 
procedures of Aim 2.
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Testbed Platform
There will be two testbed platforms
◦ A local testbed 
◦ The AWS cloud testbed 

Figure: Illustration of our testbed and 
evaluation & validation plan.

Validation for 
computational 

efficiency

Validation for 
prediction accuracy

Evaluation 
Metric

Actual computational 
time

AUC score or recall 
score 

Benchmark (1) Direct DNN model retrain without IL; and 
(2)    Common IL approaches;

Data Used Cerner Real-World Data (CRWD)
Criterion for 

Success
Compared to the 

benchmark (2), SR-IL’s 
computational efficiency 
is comparable, and the 
prediction accuracy is 

much better.

Compared to the 
benchmark (1), SR-IL’s 
prediction accuracy is 

comparable , and 
computational 

efficiency is much 
better.
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