Breakout Session 1: Track A

Implementation of AWS Cloud Computing for cryoEM Data Processing

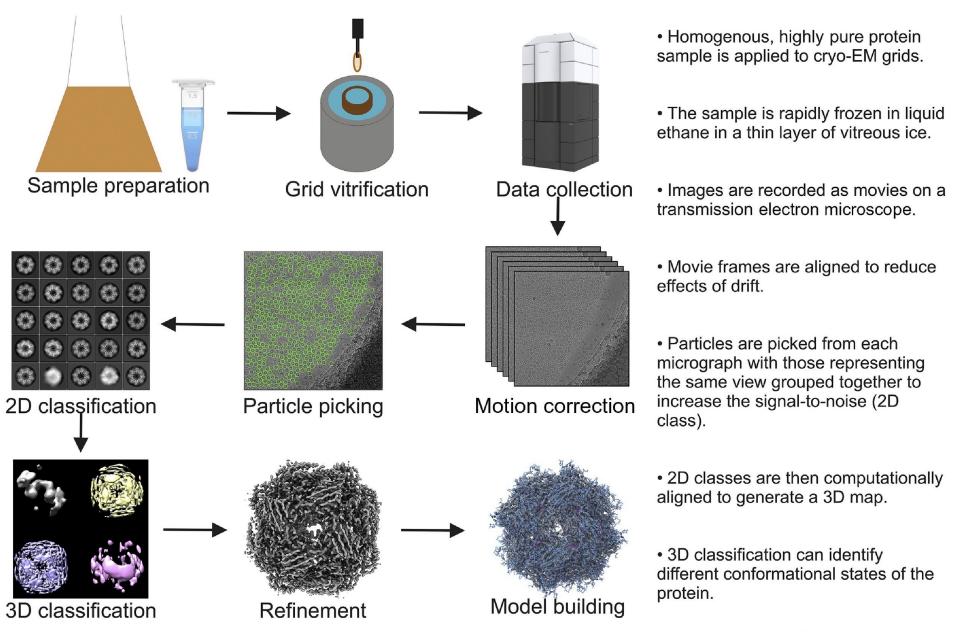
Dr. Joseph Marcotrigiano (Moderator)

Senior Investigator, NIH/NIAID

Implementation of AWS Cloud Computing for cryoEM Data Processing

Joseph Marcotrigiano

The pipeline of cryo-EM structure determination



Trends in Biochemical Sciences

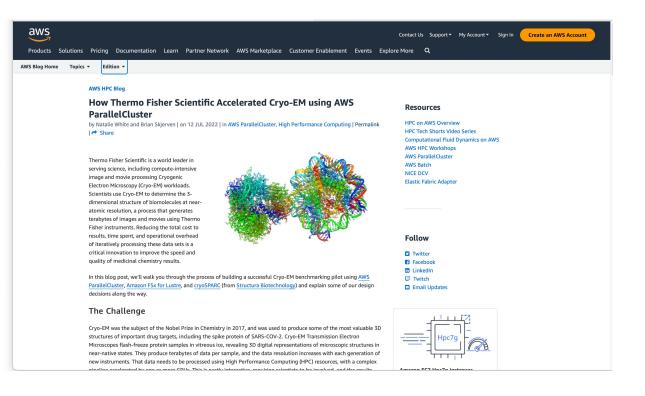
Data Amounts

- Each cryo-EM data set consists of about 5,000-10,000 movies
- A typical movie is about 0.5Gb in size, resulting in 2.5-5Tb per dataset.
- Data processing of the images increases the size of the data by 3-5x.
- In addition to data storage, cryo-EM data processing is computationally intensive.
- The structure of a yeast spliceosomal complex required more than half a million CPU hours of classification and high-resolution refinement (Kimanius et al. eLife, 2016).
- The implementation of graphics processors (GPUs) to alleviate the computational bottleneck has transformed the cryo-EM field.
- Many of the common cryo-EM software packages have been redesigned to take advantage of recent advances in GPU technology and can implement many independent tasks simultaneously.

Local High Performance Computing

- Biowulf Well set up for cryo-EM, however wait times for GPUs can be long (V100 wait times 1-3hours)
- Locus Has GPUs but I/O is not configured properly. Motion correction of one dataset took 8 days. Upgrades ongoing (Skyline)
- BigSky Well set up for cryo-EM but it is for RML only
- Workstation Have one workstation with 4 GPUs and 50Tb of storage. Data has to go through Locus and storage is limiting

Cryo-EM on AWS



thermoscientific

WHITE PAPER

Cryo-EM processing at the pace of medicinal chemistry on AWS

leva Drulyte, Adrian Koh, Brian Skjerven, Natalie White, Stephen Litster, Mazdak Radjainia

Introduction

Pharmaceutical companies that discover small molecule drugs use an iterative process known as design-make-test-analyze (DMTA) cycles to generate and optimize lead compounds¹. In a typical small molecule discovery program, several thousand new compounds are synthesized and evaluated before a drug candidate is identified as suitable for human trials.

The value of Structure-Rased Drug Design (SRDD) for rapid and

not realistic; however, developments in detector technology and cryo-EM data collection strategies now allow the collection of most datasets in a day or less⁴. The bottleneck has moved to processing terabyte-sized datasets and the question of how to significantly compress data processing timelines.

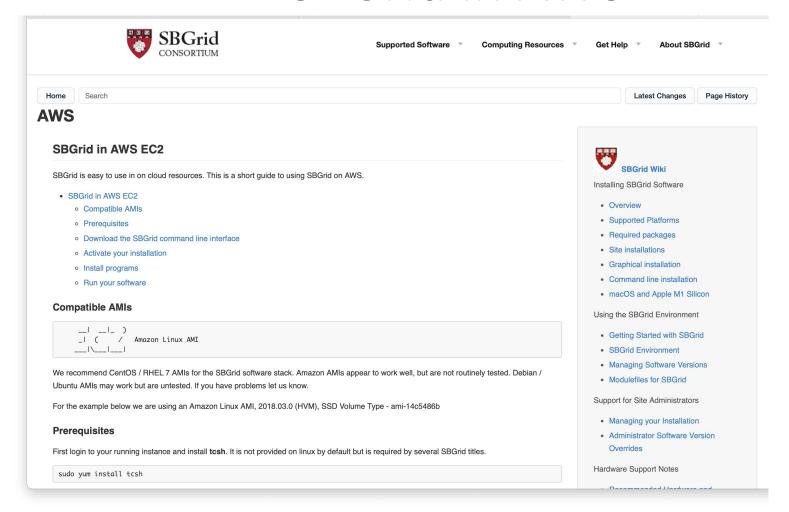
Intrigued by preliminary benchmarks, we wanted to explore how quickly we could process the larger datasets (Figure 1).

https://assets.thermofisher.com/TFS-Assets/MSD/Reference-Materials/pharma-cryosparc-wp0028.pdf https://aws.amazon.com/blogs/hpc/how-thermo-fisher-scientific-accelerated-cryo-em-using-aws-parallelcluster/

Timeline

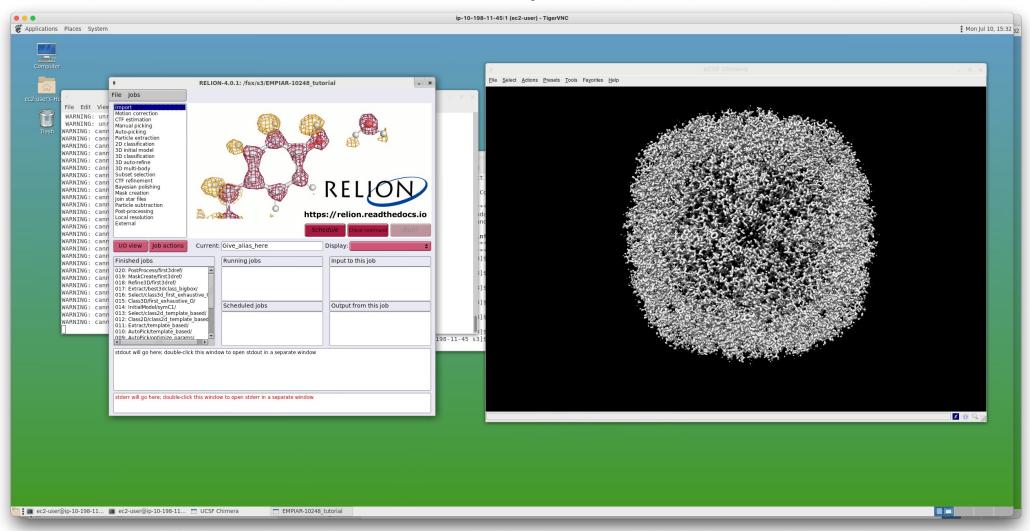
- September 2022 an NIH Cloud Lab account was created
 - Goal to explore cloud computing for cryo-EM data processing
- \$500 credit to work with Amazon Web Services (AWS) to load and test one popular cryo-EM software (cryoSPARC)
- After several attempts, cryoSPARC was loaded onto the NIH Cloud Lab account
 - Evan Bollig, Tom Fonseca, and Gargi Singh AWS
- Successful structure determination of apoferritin test sample
- \$25,000 credit on AWS from NIH STRIDES (Nick Weber)
 - Goal to process datasets from experimental samples
- Early March 2023, cryoSPARC loaded and experimental data uploaded
- Spring 2023, received \$100,000 grant from NIHCIT for further cloud development
- Summer 2023 joined SBGrid and created a complete structural biology platform in the cloud

SBGrid in AWS



We are working with Jason Key at SBGrid to implement and test packages on AWS

Virtual Desktop on the AWS



Virtual Desktop on AWS using TigerVNC Alphafold, cisTEM, Chimera, cryoSPARC, Model Angelo, DeepEMhancer, Relion (4 and 5), Topaz, loaded onto AWS using SBGrid Thanks to Tee Gobezie

Cloud vs. Biowulf vs. Workstations

"The data processing worked well and I got 3 maps at 3.1~3.5 A resolution after NUR refinement last week. Compared to Biowulf, it did take much less time in the queue before starting the job, and also finishes the job faster." – Jingyu Zhan (postdoc with Di Xia)

Job	Biowulf	Cloud	Micrographs	Classes	Particles	Box size	Customized settings
Motion correction	23h11m	20h30m	9,685				
Patch CTF	2h24min	2h02m	9,685				
							Uncertainty factor 4, 2
							final iterations, 50 online-
							EM iterations, batchsize
2D classification	15h	5h		150	1.8M	360	400, 4 gpus
Hetero Refinement	30h	6h11min		6	600,000	360	3 final iterations,1 gpu
NUR refinement	15h	3h07m			~132,000	360	2 extra final passes

"One week on AWS equals 4-6 weeks on a workstation" Sarah Nyenhuis (postdoc with Jenny Hinshaw)

Job	Workstation	Cloud	Micrographs	Classes	Particles	Box size	Customized settings	
Motion correction	18h33m	2h39m	2,435				Fcrop 1/2	
Patch CTF	3h21min	30m	2,435					
2D classification	3h42min	18min		50	149,452	744 (fcrop 500)	Uncertainty factor 10, align filament classes vertically, 17 online-EM iterations, 2 gpu	
2D classification	memory error	19min		50	165,469	870 (fcrop 580)	Uncertainty factor 10, align filament classes vertically, 17 online-EM iterations, 2 gpu	
Helical Refinement	1h51min	1h28min			47,349	744 (fcrop 500)	symmetry imposed, symmetry search, 15 iterations,1 gpu	
Helical Refinement NU	87h16min	13h20mi n			128,270	744 (fcrop 500)	symmetry imposed, symmetry search, non-uniform refinement, 15 iterations,1 gpu	
Helical Symmetry		1min1s						
Search	4min3sec	ec				744 (fcrop 500)	symmetry search, rise, 1 gpu	

Acknowledgements

NIH CIT

Nick Weber

Tee Gobezie

Thad Carlson

Gavin Brennan

<u>AWS</u>

Evan Bollig

Gargi Singh

Tom Fonseca

NIDDK

Jenny Hinshaw Sarah Nyenhuis

<u>NCI</u>

Di Xia Jingyu Zhan Rick Huang **NIAID**

Structural Virology Section

Ashish Kumar

Altaira Dearborn

Brandon Schweibenz

Khurts Shilagardi

<u>RTB</u>

Haotian Lei