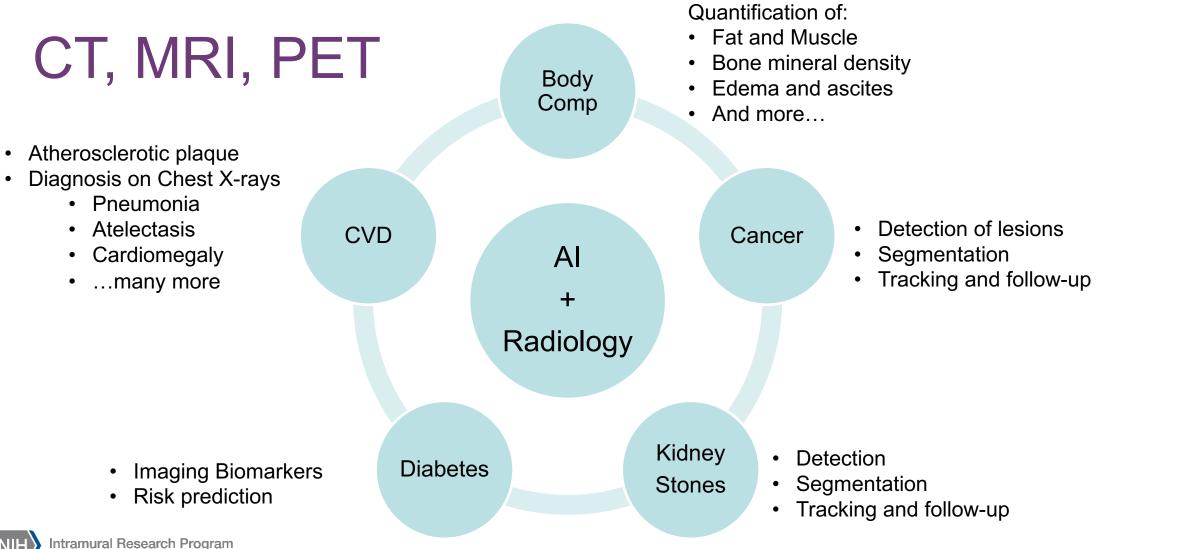
Breakout Session 3: Track A

Small Bowel Segmentation - Challenges and Directions

Dr. Pritam Mukherjee Clinical Center, Staff Scientist, NIH

Small Bowel Segmentation Challenges and Directions

PI: Dr. Ronald Summers


Pritam Mukherjee

ONE PROGRAM, MANY PEOPLE, INFINITE POSSIBILITIES

Background: What We Do

Our Research Changes Lives

Background: Organ and structure segmentation

Background: Small bowel segmentation project

- Small bowel: largest is the longest section of the digestive tract
 - long (20 ~ 30 ft)
 - convoluted
- Segmentation and path tracking is very useful for
 - Detecting blockages
 - Detecting other abnormalities such as lesions (particularly, small carcinoid tumors)
 - Guiding surgery
- Difficult to do manually

Primary Goal

• Develop an AI model to automatically segment the small bowel in CT scans

Key bottleneck

- Lack of annotated data
 - no public datasets,
 - requires lot of time and effort to annotate, and is difficult without scale

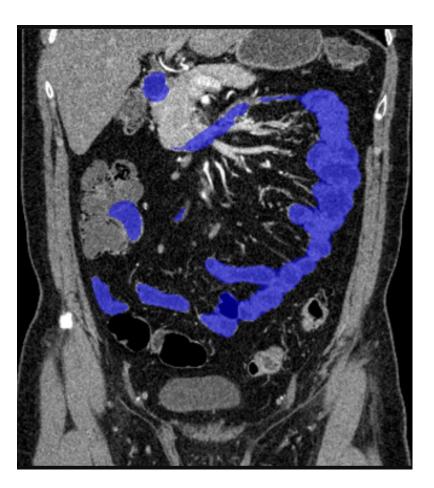
Approach

• Use crowdsourcing to create a HVD dataset

- Key personnel: Dr. Seungyeon Shin, (postdoc, now faculty at Hanyang University)
- Curating an anonymized CT dataset
 - Data from the clinical center
 - Select DICOMs which contain suitable CT images (noncontrast, contrast, etc)
 - Convert DICOMs to niftis
 - Manual verification that images do not contain any PHI/PII
- Create interface for crowd-sourced annotation
 - Use Amazon Mechanical Turk
 - Tutorials and quality checks

Roadmap (contd.)

- Quality checks
 - Manually annotated samples (n = 5), by a radiologist
 - Agreement with radiologist annotations would be used to assess
- Get crowdsourced annotations
- Perform additional quality checks
- Outputs:
 - HVD: annotated dataset
 - Model trained on annotated data


Progress

- ✓ Dataset curation
 - 60 scans downloaded from PACS, anonymized
 - Verified no PII/PHI
 - Converted 3D volumes to multiple (~50) 2D slices
 - 5 scans manually segmented
- ✓ Interface on AWS
 - Explored options on AWS SageMaker Ground Truth
 - Create 2D labeling job

Progress and Challenges (contd.)

- Challenging to get accurate segmentations based on 2D slices!
 - I and another staff scientist tried out sample cases failed miserably!
 - Even our PI, Dr. Summers, an experienced radiologists found it hard to do it accurately without being able to scroll through slices
 - Probably not feasible without medical training
- Possible solution: some 3D segmentation interface?

Challenges

- Lack of expertise!
 - No 3D segmentation interface built into AWS SageMaker
 - Lacking expertise to build a custom interface
 - Invest time and effort to learn it ourselves? Hire someone with expertise?
 - Immediate solution: hire expertise advertised for a temp position very few takers
 - A few interviews, but no suitable candidates
 - I and another staff scientist started the learning process few hands-on resources for the specific task

Challenges

- Missed opportunity!
 - A group in Switzerland published TotalSegmentator: a segmentation tool
 - TotalSegmentator could segment the small bowel very well
 - A dataset of 1024 scans with small bowel segmentations made publicly available
 - Value of proposed dataset

Pivot to related projects

- Path tracking for small intestine
 - Reinforcement learning based approach some preliminary work

Home > Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 > Conference paper

Deep Reinforcement Learning for Small Bowel Path Tracking Using Different Types of Annotations

Seung Yeon Shin 🗠 & Ronald M. Summers

Conference paper | First Online: 16 September 2022

6906 Accesses | 1 Citations

Part of the Lecture Notes in Computer Science book series (LNCS, volume 13435)

Pivot to related projects

- Detecting carcinoid tumors in the small intestine last project for Dr. Shin
 - Deep learning based approach some preliminary work

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

RESEARCH ARTICLE 🛛 🔂 Full Access

Fully-automated detection of small bowel carcinoid tumors in CT scans using deep learning

Seung Yeon Shin 🔀, Thomas C. Shen, Stephen A. Wank, Ronald M. Summers

First published: 29 March 2023 | https://doi.org/10.1002/mp.16391

Other ideas

- Exploring large language models on the cloud
 - LLMs, like ChatGPT and GPT-4 have shown incredible promise
 - Open-source privacy-preserving LLMs may be suitable for our use cases
 - Very resource hungry example, Falcon -180B requires 8 80GB A100 GPUs for inference!!

២Pritam Mukherjee, Benjamin Hou, ២Ricardo B. Lanfredi, ២Ronald M. Summers 🖂

Conclusions

- AWS an amazing resource
- Can fill gaps in infrastructure for resource hungry projects
- Challenge: lack of expertise/guidance

Questions or Suggestions?

Contact: pritam.mukherjee@nih.gov

