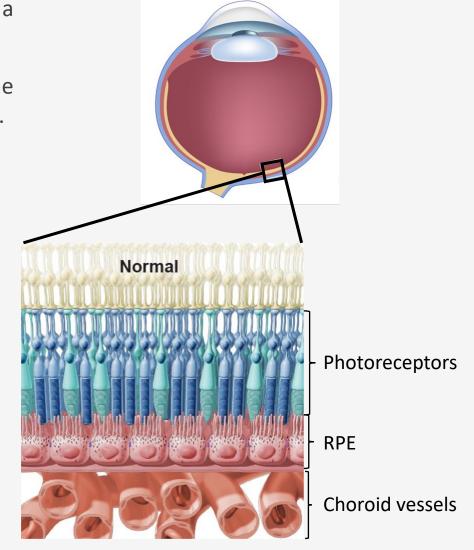
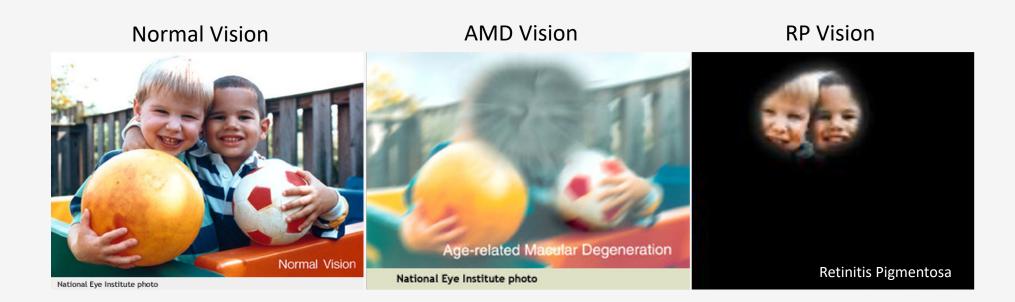
Breakout Session 4: Track A

REShAPE: A Machine Learning Software for Cell Morphometry Analysis of Epithelial Monolayers

Dr. Davide Ortolan Postdoc, NEI/NIH


REShAPE: A Machine Learning Software for Cell Morphometry Analysis of Epithelial Monolayers

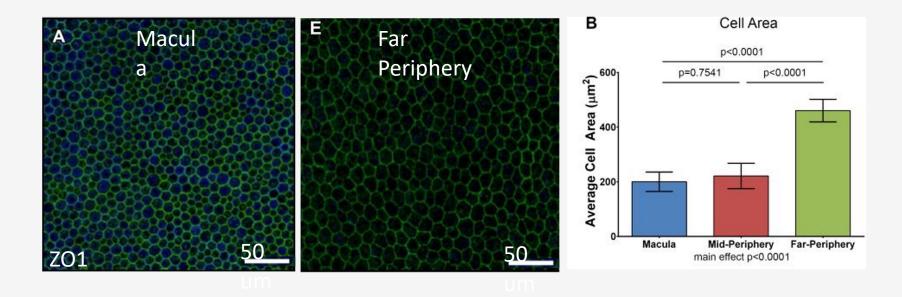
Ophthalmic Genetics and Visual Function Branch


National Eye Institute

The Retinal Pigment Epithelium (RPE)

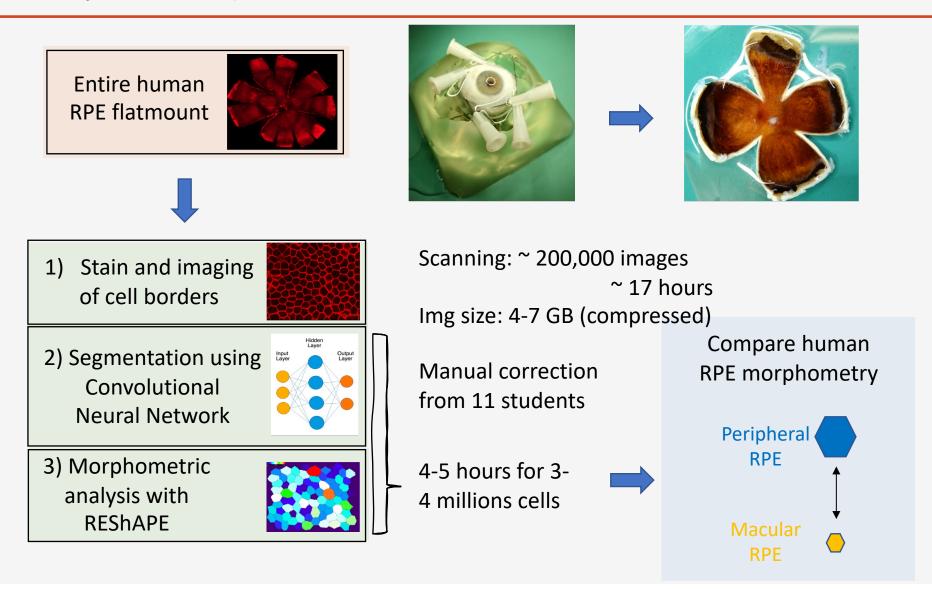
- The Retinal Pigment Epithelium is a monolayer of cells in the back of the eye
- Plays crucial roles in maintaining the normal retinal function and homeostasis.

Regional Retinal Degenerative Diseases

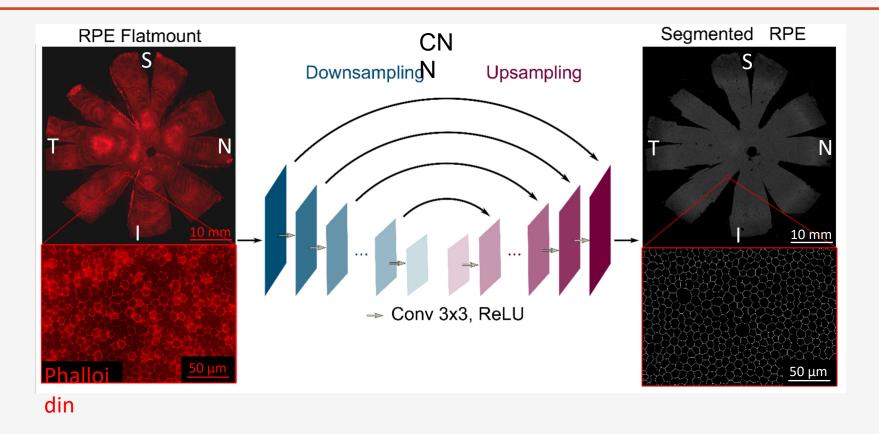


- Macular RPE degeneration leads to Age-related Macular Degeneration (AMD)
- Peripheral RPE defects leads to Retinitis Pigmentosa (RP) (RPE65 mutations)

<u>There are regional RPE differences that underlie different types of regional retinal</u> <u>degeneration</u>.

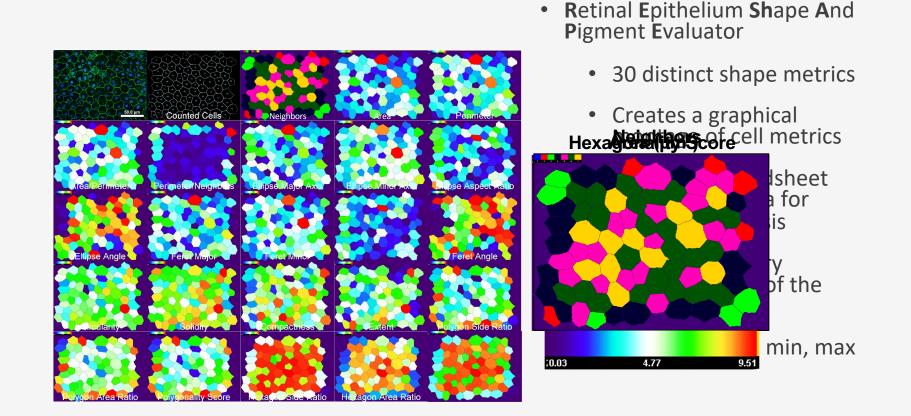

Regional Differences in Retinal Pigment Epithelium (RPE)

Macular RPE cells are smaller than peripheral (Bhatia et al., 2016)



A complete morphometric map of the human RPE monolayer is not currently available

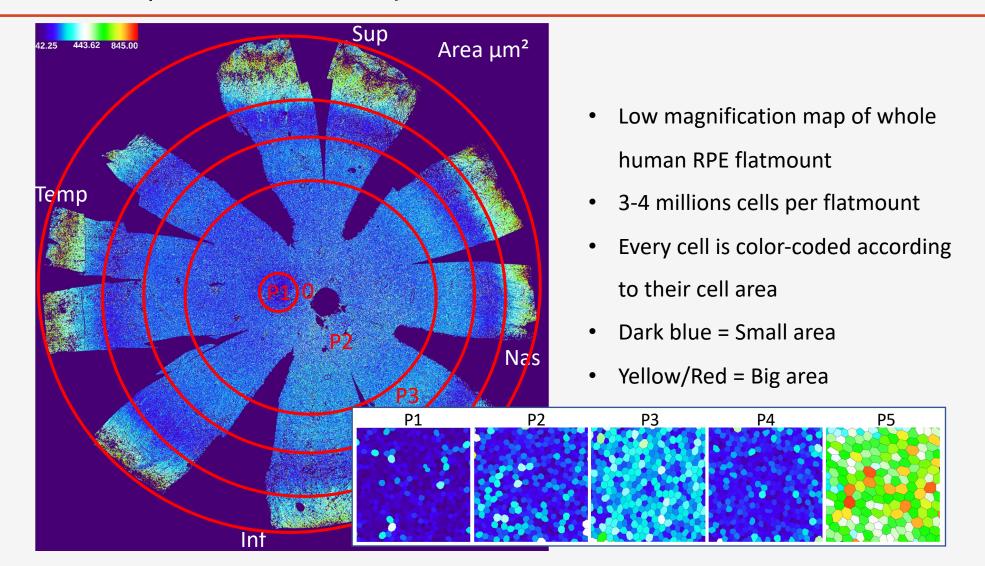
Project Design


Segmentation Using Convolutional Neural Network (CNN)

S = Superior N = Nasal

Segmentation accuracy 95-98%

Morphometric Analysis with REShAPE



• Schaub and Hotaling at al, *Deep learning predicts function of live retinal pigment epithelium from quantitative microscopy*, Journal of Clinical Investigation, 2020

• Ortolan, D. et al. Single-cell–resolution map of human retinal pigment epithelium helps discover subpopulations with differential disease sensitivity. PNAS, 2022

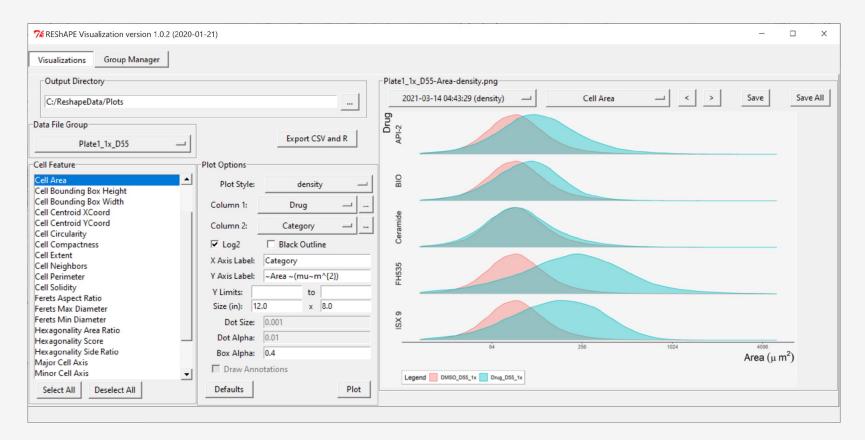
Nathan Hotaling

Morphometric Analysis of Human RPE

Ortolan, D. et al. *Single-cell–resolution map of human retinal pigment epithelium helps discover subpopulations with differential disease sensitivity.* PNAS, 2022

Enhancements and Improvements to REShAPE processing from Strides Initiative

Previous process:


- Required switching between different external applications
- Some parts were painfully slow
- Limited image size (~30,000 x 30,000 pixels max)
- Did not support Carl Zeiss microscope images (CZI) directly

Updated process:

- Has a **unified UI** (pictured), no need for switching between external applications along the way
- Slow parts were optimized, now it takes minutes/hours instead of days/weeks
- Supports extra large images, the size is only limited by the amount of available RAM
- Supports CZI
- Can be deployed to other systems, including Cloud VMs

Directories									
Input directory:	C:/RPE_Data/Z01_suite/REShAPE C:/RPE_Data/Z01_suite/REShAPE/Processed ptions					Output Graphics Options			
Output directory:						Reconstruct Tiled Images?			
NN Segmentation O						Create Colored Images:	All		_
Batch Size: 15		Pad Tiles By: 100	Save TIFF	Suffix	Main	Coloring:	Therma	l.	_
Use GPU? (•	Yes O No		Plane 1	DAPI	0	Image Format:	PNG Separate	Images	_
Internal Scale:	None		Plane 2	AF488	(*		C Yes C No Set Limits		
			Plane 3	AF594	0	Use Manual Limits?	C Yes C No Set Limits		
	None —		Plane 4		0				
Progress						Cell Size Restrictions for Anal	veie		
-> C:\RPE_Data E.json	\Z01_suite\	REShAPE\Processed\P1-	W2-ZO1_D05_F	002_Z01_RE	ShAP 🔺	Lower Cell Size: 1	Sa.Microns		
P1-W3-ZO1_D02_F006_Z01_REShAPE.tif (already done) -> C:\RPE_Data\Z01_suite\REShAPE\Processed\P1-W3-Z01_D02_F006_Z01_RE						Upper Cell Size: 1000 Sq.Microns			
-> C:\RPE_Data E.json	\201_suite\	RESNAPE\Processed\P1-	W3-ZO1_D02_F	006_201_R	ShAP				
		ShAPE.tif (already do REShAPE\Processed\P1-		000 701 DT	Chap.	-Automated Unit Conversion-			
	\201_Suite\	RESHAPE (Processed (P1-	W4-201_D04_F	002_201_R	.Snap	Convert pixels to real units?	• Yes O	No	
E.json		tory: C:/RPE_Data/Z01	suite/REShA	PE		Length of scale bar:	1.0 Pic	xels	
Found 0 image(
	0) in 0:00:					Length of scale bar:	0.216666667 M	icrons	

REShAPE Visualizations

Automatically generates most common types of charts to visualize statistical distributions of cells by different geometrical parameters computed by REShAPE.

REShAPE is <u>ready to be used</u> by any lab which works on epithelia or cells with similar shape. Implementation on cloud will be very useful for making the software available.

REShAPE can be <u>extended/adapted for use on any other cell type</u>

What's left to do?

REShAPE is still dependent on MATLAB (and MATLAB licenses). We are currently converting all REShAPE code to Python to match the need of efficient cloud use and to optimize it for native cloud infrastructure.